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Mission

• Assess ancient habitability

• Search for signs of past life

• Cache rock/soil samples for future return
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Mission

• “Baseline Reference Scenario”, requirements more aggressive than MSL

• Lots of lessons learned from analyzing MSL operations

• Challenge in predicting vehicle resource use

• Time to execute activities

• Data volume acquired

• Energy consumed

• Heating required

• Productivity impacts due to communication window shifting

• Loss of sols due to commanding error or unexpected faults

• Motivated development of Onboard Planner
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Onboard Planner

• A component in flight software

• Input: “plan file” that specifies activities, resources, constraints

• Scheduler: generate a schedule of the activities

• Executive: dispatch each activity at their start time, report their status
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Benowitz, E. Mars 2020 Rover Onboard Scheduler. In Flight Software Workshop 2016. https://www.youtube.com/watch?v=26v8ZUPpuhk
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Major Productivity Gains

• Using margin: opportunistic acts, expanding acts, early-start

• Flexibly handle issues: late-start, rescheduling

• Onboard management of heating, sleeping

Activity 1 Activity 2 Activity 3

Heating for activity 3

Sleep
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Operational Safety
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Operational Model

• Flight system, including architecture 

and flight software, inherited from MSL

• OBP is developed as an additional 

capability, not as the core capability

• Utilizes many existing interfaces to: activate sequences, initiate heating, 

request FSW power-off, query certain spacecraft state
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OBP checks

• Scheduling constraints

• Plan-wide limit on state of charge level, peak power, data volume usage

• Fixed activities that must be in the schedule (comms, manual shutdown)

• Executive enforcement

• Verify state conditions with more specialized modules before dispatching

• E.g. thermal zones at allowable flight temperature

• Sanity check activity constraints

• E.g. dependency on another activity satisfied
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FSW checks

• In system fault conditions, OBP will cease autonomous operation

• Return the system to a quiescent, safe state

• Minimum state-of-charge-triggered fault

• Maximum uptime fault

• Lower-level resource arbitration / condition checks
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Ground checks

• OBP records data that enables reproduction of each schedule on the 

ground

• Tunable parameters on OBP

• Affect scheduling time, resource limits, execution flexibility

• Monte Carlo simulation of schedule and execution during plan design

• Promote robustness of rescheduling in the face of execution uncertainties

• Explainable scheduling tool

• Ease plan design, inspire user-trust
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Software Safety
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Timeliness

• Separate tasks

• Scheduler fully event-driven, no hard deadline, lower priority

• Executive runs in a 1Hz rate group, higher priority

• Scheduler

• No-backtrack scheduling algorithm

• Considered set

• Executive

• Bounded amount of work each cycle
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Memory

• Number of activities, number of constraints, etc. capped at the design 

level

• Entire OBP uses about 3 MB in RAM

• Data stored in non-volatile memory with checksum and boot counter

• Verified upon read-back
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Playing nice

• Scheduling disabled for a period after initialization

• Allow sensor readings to stabilize

• Avoid additional load during sensitive period

• Scheduling disabled after shutdown procedure starts

• Avoid additional load during sensitive period

• OBP cannot request sleeps shorter than a minimum duration

• Limits frivolous resets

• OBP throttles rescheduling attempts

• Limits thrashing causing unnecessary load
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